Baterie litowo-jonowe vs. półprzewodnikowe – porównanie

Baterie litowo-jonowe vs. półprzewodnikowe – porównanie

Gigant elektroniczny Samsung zrobił ważny krok w kierunku uczynienia z baterii półprzewodnikowych realnej technologii dla samochodów elektrycznych – co oznacza dłuższy zasięg dla właścicieli pojazdów elektrycznych (EV).

Advanced Institute of Technology (SAIT) firmy Samsung twierdzi, że przełom chemiczny oznacza zmniejszenie rozmiaru baterii o połowę, dzięki czemu teoretycznie można by podwoić zasięg dzisiejszych pojazdów elektrycznych pierwszej generacji, z około 320-480 do 640-960km na jednym ładowaniu.

Tajemnica super akumulatora Samsunga tkwi w jego elektrolicie. W konwencjonalnych akumulatorach EV elektrolit jest płynem, ale naukowcy i inżynierowie firmy Samsung opracowali technologię stałego elektrolitu, która jest znacznie gęstsza niż w przypadku płynu.

Zwiększając gęstość energii o deklarowany współczynnik trzech, prototyp baterii półprzewodnikowych Samsung wprowadza nową powłokę srebrno-węglową znaną jako Ag-C, która ma grubość zaledwie 5,0 mikrometrów. Ten nanokompozyt Ag-C nie tylko pozwala na bardziej kompaktowe pakowanie, ale również jest odporny na rozwój “dendrytów” – chemicznego tworzenia się kryształów igłopodobnych, co zmniejsza pojemność baterii w wielu cyklach ładowania, a także stabilność opakowania.

Samsung mówi, że można je ładować ponad 1000 razy (około pół miliona mil całkowitego zasięgu), aby w przyszłości stworzyć bardziej atrakcyjne i atrakcyjne pojazdy elektryczne.

Akumulatory półprzewodnikowe do samochodów elektrycznych

Zastosowanie płynnego elektrolitu w bateriach litowo-jonowych ma szereg wad. Pojemność i zdolność do dostarczenia szczytowego poziomu naładowania pogarsza się wraz z upływem czasu, a akumulatory litowo-jonowe również wydzielają dużo ciepła, co wymaga włączenia do ich konstrukcji ważkiego systemu chłodzenia. A dzięki zawartej w nich łatwopalnej cieczy akumulatory litowo-jonowe mogą się zapalić, a nawet wybuchnąć w razie ich uszkodzenia w wypadku.

Co zatem sprawia, że technologia akumulatorów półprzewodnikowych jest tak dobra dla pojazdów elektrycznych, jak to działa?

Najprościej mówiąc, w bateriach półprzewodnikowych stosuje się elektrolit stały(może mieć postać ceramiki, szkła, siarczynów lub stałych polimerów) w przeciwieństwie do ciekłego lub polimerowego żelu występującego w obecnych bateriach litowo-jonowych.

Poza elektrolitem stałym, baterie półprzewodnikowe działają podobnie jak w bateriach litowo-jonowych, ponieważ zawierają elektrody (katody i anody) oddzielone elektrolitem, który pozwala na przejście przez nie naładowanych jonów.

Baterie półprzewodnikowe istnieją już od jakiegoś czasu, ale są używane tylko w małych urządzeniach elektronicznych, takich jak znaczniki RFID i rozruszniki serca, i w swoim obecnym stanie nie nadają się do ponownego ładowania. W związku z tym prowadzone są prace mające na celu umożliwienie im zasilania większych urządzeń i ich ładowania.

Co sprawia, że baterie półprzewodnikowe będą kolejnym etapem rozwoju nośników energii?

Dzięki temu, że elektrolit stały ma mniejszą powierzchnię, baterie półprzewodnikowe obiecują od dwóch do dziesięciu razy większą gęstość energii niż baterie litowo-jonowe tej samej wielkości. Oznacza to mocniejsze akumulatory bez dodatkowej przestrzeni lub bardziej kompaktowe akumulatory bez utraty mocy. Oznacza to samochody elektryczne o dużej mocy i większym zasięgu lub bardziej kompaktowe i lżejsze pojazdy elektryczne. Oczekuje się, że będą one również szybciej się ładowały.

Większa wydajność i gęstość energii oznacza, że akumulatory półprzewodnikowe nie wymagają chłodzenia i elementów sterujących, jak to ma miejsce w przypadku akumulatorów litowo-jonowych, a to oznacza mniejszą całkowitą powierzchnię podstawy, a także większą swobodę podwozia i mniejszą wagę. Nic dziwnego, że akumulatory półprzewodnikowe są najczęściej cytowane przez producentów samochodów.

Bezpieczeństwo to kolejna zaleta, którą oferują akumulatory półprzewodnikowe. Reakcje egzotermiczne w akumulatorach litowo-jonowych mogą powodować ich rozgrzanie, rozszerzanie się i potencjalnie rozerwanie rozlewającego się łatwopalnego i niebezpiecznego ciekłego elektrolitu; w niektórych przypadkach powoduje to niewielkie eksplozje. Posiadanie stałego elektrolitu skutecznie omija ten problem.

Wreszcie, stosowanie elektrolitu stałego oznacza, że baterie mogą wytrzymać więcej cykli rozładowania i ładowania niż baterie litowo-jonowe, ponieważ nie muszą być narażone na korozję elektrolitu spowodowaną substancjami chemicznymi znajdującymi się w elektrolicie ciekłym lub gromadzeniem się warstw stałych w elektrolicie, które pogarszają żywotność baterii. Baterie półprzewodnikowe mogą być ładowane nawet do siedmiu razy więcej, co daje im potencjalną żywotność wynoszącą dziesięć lat, w przeciwieństwie do kilku lat, w których oczekuje się, że baterie litowo-jonowe będą skutecznie działać.

Wady ?

Można się zastanawiać, dlaczego w pojazdach elektrycznych nie używa się akumulatorów półprzewodnikowych, skoro stanowią one panaceum na problemy związane z akumulatorami litowo-jonowymi. Wyzwaniem w przypadku akumulatorów półprzewodnikowych jest jednak to, że są one bardzo trudne do produkcji na skalę przemysłową. Nie tylko są one obecnie zbyt drogie, by można je było wykorzystać do użytku komercyjnego, ale wciąż pozostaje wiele do zrobienia, by były gotowe do masowego zastosowania na rynku, zwłaszcza w pojazdach elektrycznych.

W chwili obecnej, nadal istnieje potrzeba znalezienia odpowiedniego składu atomowego i chemicznego dla elektrolitu stałego, który ma odpowiednie przewodnictwo jonowe, aby dostarczyć wystarczającą moc dla silnika EV.

Dlatego też zalety akumulatorów półprzewodnikowych uporczywie określiliśmy mianem “mogłyby”, ponieważ jeszcze nie udowodniły się one w prawdziwym świecie – np. w gadżetach konsumenckich, nie mówiąc już o samochodzie elektrycznym.

Zdaniem producentów …

Pomimo tych wyzwań, powab akumulatorów półprzewodnikowych jest wyraźnie silny, ponieważ Toyota, Honda i Nissan połączyły siły, aby stworzyć konsorcjum Libtec, które ma opracować akumulatory półprzewodnikowe, a prace podobno są już na bardzo zaawansowanym etapie.

Instytucje akademickie, producenci akumulatorów i specjaliści materiałowi badają, w jaki sposób półprzewodnikowe akumulatory mogą zostać przekształcone w źródła energii nowej generacji do masowego użytku. Nie brakuje szumu i zainteresowania akumulatorami półprzewodnikowymi.

Jednak Toyota nie przewiduje masowej produkcji akumulatorów półprzewodnikowych do połowy dekady. A inni producenci samochodów, tacy jak Volkswagen, nie spodziewają się, że akumulatory półprzewodnikowe będą gotowe do użytku co najmniej do 2025 roku.

fot. IBM Q Sytem One – komputer kwantowy

IBM i Daimler współpracują ze sobą, aby lepiej zrozumieć technologię akumulatorów. Musimy znaleźć zupełnie inną chemię, aby stworzyć akumulatory przyszłości” – mówi Katie Pizzolato, dyrektor ds. badań nad aplikacjami w IBM. Informatyka kwantowa może pozwolić nam skutecznie wniknąć w reakcje chemiczne akumulatorów, aby lepiej zrozumieć materiały i reakcje, które dadzą światu te lepsze akumulatory”.

Panasonic jest współwłaścicielem Gigafactory Tesla i dostarcza akumulatory do samochodów Tesla, i uważa, że poprawa w zakresie akumulatorów EV w krótkim czasie będzie wynikać z dalszego rozwoju akumulatorów litowo-jonowych.

Zamiast podążać drogą półprzewodnikową, Tesla pracuje nad poprawą wydajności akumulatorów litowo-jonowych, a w zeszłym roku opracowała nową „chemię”, która może zasilać pojazdy elektryczne przez ponad milion mil.

Podsumowując…

Biorąc pod uwagę ulepszenia w bateriach litowo-jonowych a także fakt, że są one już produkowane masowo, jest mało prawdopodobne, że wkrótce zobaczymy ich wyparcie przez baterie półprzewodnikowe.

Nie mniej akumulatory półprzewodnikowe wyglądają jak przyszłe źródło energii dla samochodów elektrycznych, tylko droga do nich może być dłuższa niż początkowo sądzono.

 

źródło: carmagazine.co.uk, samsung

Zostaw komentarz

Twój email nie będzie publikowany. Wymagane pola są zaznaczone *